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A general approach for constructing “hybrid schemes ” in order to solve quasilinear 
hyperbolic initial-value problems is presented. The hybrid schemes are constructed 
from a first-order accuracy operator which dominates in shock regions and a higher- 
order operator which produces more accurate results in smooth regions. 

The usefulness and accuracy of the method is demonstrated in one- and two-dimen- 
sional examples, while overcoming nonlinear instabilities and post-shock oscillations. 

In order to overcome the post-shock oscillations that occur when using second- 
and higher-order accurate schemes, various kinds of artificial viscosity terms were 
used (see, for example, [IO] and [5]). In several spatial dimensions these oscillations 
can even cause nonlinear instabilities, and in order to be able to calculate shocked 
flows, multidimensional artificial viscosity terms are needed. Burstein [2] used 
two one-dimensional terms of this kind, but although his results were satisfactory, 
the pseudoviscosity terms are relatively complicated, time consuming and are 
difficult to generalize. Intuitively, it seems clear that for second- and higher-order 
schemes, higher derivatives are used even near shock-like discontinuities, and that 
is the reason for overshooting, oscillations and even nonlinear instabilities. For 
linear hyperbolic equations with discontinuous initial conditions, Godunov [3] 
and Vreugdenhill [l I] showed that nonmonotonic shock profiles must occur when 
second-order schemes are used. For the Lax-Wendroff method in the nonlinear 
case, an explanation for the oscillations was given, at least for stationary shocks 
[5, p. 2291. 

The use of first-order accurate schemes produced smooth shock profiles, as with 
the Lax staggered method [4], where the shocks were very smeared; even better 
results were obtained with the Abarbanel-Zwas iterative method [l] or with the 
use of Shuman filters [9]. Knowing all that, we wanted to construct a second-order 
scheme, which changes automatically and smoothly to a first-order scheme only 
in narrow shock regions. We would like to have such self-adjusting schemes, 
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which could be easily generalized to more dimensions without being too 
complicated and time consuming. 

This will be done in the next chapters for nonlinear hyperbolic systems of 
conservation form, such as 

where 
Wt = IQ Wlz + [WVI, 3 (1) 

F, = A(W). w,, 

G, = B(W)* W,, 

and where A and B are matrices which can be simultaneously symmetrized by a 
similarity transformation, a fact that guarantees hyperbolicity. 

All the numerical results reported herein were calculated with a CDC-6600 
computer at the Tel-Aviv University computation center. 

A ONE-DIMENSIONAL HYBRID SCHEME 

We propose to construct hybrid schemes made of certain convex combinations 
of other two schemes, namely, we write 

w;+1 = [eL, + (1 - e) L,] . W,“, (2) 

where Win = W(t, , idx), L, is a first-order finite difference scheme and Lz a 
second(or higher)-order scheme. The dimensionless quantity 0, which will be called 
the “automatic switch,” should be normalized so as to be nonnegative and not 
more than one. It should have the property 

0 = 
! 
O(l) in shock regions 
OW) in smooth regions (3) 

where h = dx and r is a large enough integer, so that the high accuracy in smooth 
regions will be preserved. 

An example for (2) can be constructed by taking as L, the staggered Lax scheme 
141, 

fl” = L, win = (WT+, + Iv..,)/2 + (A/2)(F.+, - FL3 

and as L, the Lax-Wendroff method [5], 

(4) 
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Here h = At/Ax = At/h and Ar+,1,2 = A(( Wr+l + Win)/2). Besides substituting 
(4) and (5) into (2), we want the switch 6 to be represented so as to fit into the 
conservation form of L, and L, . This is important since 0 = Oin, and since it is 
well known that only proper conservation forms produce correct shock velocities 
(see [8], for example). These considerations lead to the scheme 

w;+1 = Wi” + ww,“,, - F:,) + (X”/Z)[(l - O:+i/J AZ”T,,,(Fin,l -- F,“) 

~ (1 - 8:-1,2) A:-,#,” - F&)] 

+ mtl,2<Wzn,l - Wi”) ~ l9in_& W,” - W,“_l)]. (6) 

This scheme adds to the Lax-Wendroff operator the dissipative terms 

@i”,,,&Wi”,, - W,“) - h2A:,,,(F;+, - F,“)] 

- _I$? 2 2-1,2[( W,” - W&) - A2‘4&,,(Fi” - ly?,)]. (7) 

We see that 19 appears in terms that approximate $h2(0 W,), and ~(At)2(BAFz), , 
and if 0 = O(h) in smooth regions then the second-order accuracy is preserved 
there. If L, is taken to be of I-th-order accuracy then we need 8 = O(P), where 
m >, I - 1. In shock regions, property (3) implies the domination of L, as long as 
the switch 8 senses strong shock-like gradients; in this sense, the scheme is self- 
adjusting. The structure of 0 will be dealt with later. 

LOCAL MONOTONICITY REQUIREMENTS 

We bring now a linear monotonicity analysis in order to find out which additional 
conditions should be imposed on 0, such that monotonic behavior near shocks 
can be expected. We shall use two different methods due to Lax and Wendroff [5], 
and Godunov [3]; both methods yield the same condition. 

Lax and Wendroff [S, p. 2281 took a stationary shock and obtained for their 
scheme, without artificial viscosity terms, the equation 

(A + XA2)i+m . ( Wi+l - Wi) + (A - hA2)i-l,2( Wi - Wivl) = 0, 03) 

where the upper index n was omitted. Subsequently they substituted for W a 
solution of the form 

w, = w, + rk+lw, (9) 

and applied the spectral mapping theorem to get 

r = (hp - 1)/C& + 11, (10) 
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where I-L is any one of the eigenvalues of A. Since for stability h j p 1 < 1 is needed, 
Lax-Wendroff’s r is nowhere positive and explains the post-shock oscillation 
[5, p. 229-2301. Doing the same with our hybrid scheme (6) we obtain 

(01 + AA + (1 - 0) ~“A2~~+l:2wi t1 - w 
+ { 41 + hA - (1 - 0) h2A2}i-1,2( W, - Wi-l) = 0. (11) 

Substituting (9) into (11) and applying the spectral-mapping theorem leads to 

r = VW - &4 - Ml - hp)]/[B(l - hq.2) + hp(i + hp)l (A I p I < 1). 
(12) 

The case 0 = 1 yields the positive r corresponding to the first-order Lax scheme 
[4]. Imposing Y >, 0, and knowing that 9 does not exceed one, we obtain that the 
condition 

x I P l/U + x I I” I) < e G 1, (13) 

must be met in shock regions. 
Godunov [3] uses a different approach and imposes monotonicity on schemes for 

solving Ut = CU, due to the fact that if U is monotonic at t = 0, the exact 
solution will remain monotonic for every t 3 0. For the constant-coefficient case 
it is enough to test a step function (see [3]). 

Let us now take 8 to be locally constant, and substitute the step function 

(14) 

into our hybrid scheme (6) for the equation U, = CU, (C > 0). The difference 
solution after a single time step turns out to be 

ut = 0, 6 -c 01, 
u,l = (z/2)(1 + z) + (e/2)(1 - 27, (i = O), 

U,I = 1 + (z/2)(1 - z) - (e/2)(1 - z2), (i = l), 
(15) 

Ui’ = 1, (i > 0, 

where z = XC and z < 1 to ensure stability. Imposing monotonicity on (15) yields 
&I - z2) > z(1 - z) which leads exactly to (13). 
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STABILITY ANALYSIS 

In the linear stability analysis, A is taken to be locally constant as usual, but 
here we assume that 0 can be taken as locally constant too. This seems to be 
justified in view of the fact that 0 < 19 < 1, and its values certainly do not vary 
more drastically then the “locally constant” A(W). The numerical results, presented 
in the final two sections, support that assumption a yosteriori. As the matrices A 
and B are symmetrizable by the same similarity transformation, it is enough to 
investigate the case where A and B are already symmetric. In this case if L, and L, 
obey the Von Neumann condition, then 11 L, /I < 1, 11 L, j/ ,< I, and 

where L is the hybrid scheme in question and /j . 11 is the appropriate norm. If we 
now take the stability requirements for L, and L, separately, we see that the stricter 
criteria of the two, implies the stability of L. This is the rule for any number of 
spatial dimensions and every suitable basic scheme L, and L, . In the one- 
dimensional case for the hybrid scheme (6) the stability condition is 

h = &,/Ax < l/l cry I, (17) 

where CT~” is the largest eigenvalue (in absolute value) of A. The numerical radius 
can replace the norm in (16) as shown in (30). 

In order to gain more insight into the stability properties of (6) we perform the 
usual Fourier transformation and denote by 5 = k . dx the dual variable. The 
amplification matrix of (6) is 

G = I + ihA sin 5 + (cos 5 - I)[01 + (1 - 8) PA’] (18) 

and by using the spectral-mapping theorem we have 

1 g I2 = (1 - (1 - cos t)[e + (1 - 19) h2A2]}2 + h2a2 sin2 t, (19) 

where g and a are the corresponding eigenvalues of G and A. After rearrangement 
of terms, (19) takes the form 

1 g 12 = 1 - 42(1 - X2a2)[h2a2(1 - eyz + e(i - ez)], (20) 

where z = sirP([/2). Note that when a = 0 and 0 < i3 < 1 we have I g j2 < 1 
for all 0 < 1 5 ) < rr; this is of importance for cases in which some of the eigen- 
values of A vanish [2, p. 209-2101. 
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THE AUTOMATIC SWITCH 

Up to now we have imposed on the switch 0 the following properties: 

(I) Sensitivity to shock-like discontinuities [B = O(1) in shock regions], 
(IT) Monotonicity in shock regions (l/2 < 8,,, < l), (see (13)), 

(III) Convexity of the combination of the two basic schemes (0 < ~9 < l), 
(IV) Absence of effect on the I-th-order accuracy in smooth regions 

[e = O(P), m > I - I], 
(V) Representation in conservation form [as in (6)]. 

We see that 0 must attain its maximum 6’ mitx at the shock (at the largest shock if 
there are a few) and l/2 < 0 max < 1. It is also desired that 0 will decrease sharply 
to O(P) on both sides of shocks. 

Let us now consider any function p of the dependent variable which is a good 
sensor of shocks. We select for the sake of simplicity the largest eigenvalue of A 
as such a function p. 

A possible choice for 0 is a normalized pseudoviscosity term 

&+1/z = x ( 
I Pi+1 - Pi I m 

ma I CL~+~ - pli I 1 ' 
(21) 

where m >, 1 - 1 and l/2 < x < 1. A switch like (21) can be substituted into (6) 
which is in conservation form; it is a dimensionless quantity which serves as a 
mathematical device without having any physical, or pseudophysical meaning. 

At the sharpest gradient within the shock region, 1 pi+l -- pi 1 = O(1) and 
19 = x. In smooth regions, 0 = O(P) < O(/Z-~), since then 1 pie1 - pi j = O(h). 
Whenever the solution contains shocks, the denominator in (21) is O(l), a fact that 
is uneffected by mesh refinements. This is so since for suitable basic schemes, like 
that of Lax-Wendroff, the number of cells in a shock is independent of h, namely, 
refinements imply sharper shocks. The fact that 0 is normalized is very beneficial 
in our analysis but can be dangerous in the following situations: 

(i) When the solution is (or still is) continuous and the l-th-order accuracy 
is desired everywhere. 

(ii) When the solution contains, in addition to shocks, strong rarefactions 
so that there is a possibility of getting the maximal 0 at a rarefaction. This will not 
occur for a fine enough grid since mesh refinements do sharpen shocks but do not 
change rarefaction gradients. 

A remedy for these situations can be to insert a check which allows the use of a 
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nonzero 6 only when strong enough shock-like gradients are present. In addition, 
a much sharper l3 can be used as, for example, 

maxk 1 pk+l - f*.k 1 "'i 

I pi+1 - Pi I i ’ (22) 

In dealing with hydrodynamic problems we can also use a method proposed by 
Rosenbluth [7, p. 3131, namely, allow 6 i 0 only where compression occurs. 
Doing this, expression (21) takes the form 

I Pi+1 - Pi I n’ 

4+liz = ’ max 1 vk+l - pk / ' 
(*)(Pi+l - pi) < 0, compression (23) 

0, (j-)(pi+, - pi) > 0, rarefaction. 

The maximum, here, is taken over compression regions only. 
The quantity (pi+1 - pi) changes sign when crossing from rarefaction (diverging 

characteristics) to compression (converging characteristics); the appropriate sign 
depends on the choice of p and the direction of the spatial variable. A similar form 
can be given to (22). A larger x, within the range l/2 < x < 1, will yield smoother 
results but wider shocks. This can be expected and the optimal x must be chosen 
so as to achieve a compromise between the smoothness and sharpness of the shock 
profiles. While the choice x = 1 means that at a single point only L, is used; 
x = l/2 gives equal weight to L, and L, at the strongest shock-gradient point. 

The self-adjusting hybrid schemes deal very well with cases containing several 
shocks. For example, problems of shallow flows over a ridge were very successfully 
solved with the proposed meth0ds.l In such cases it is best to take the minimal 
allowed m, namely, m = I - 1, in order to prevent giving insufficient weight to L, 
near the weaker shocks. 

TWO-DIMENSIONAL HYBRID SCHEMES 

When dealing with two-dimensional conservation laws like (1) we can take as L, 
an extended staggered Lax scheme, 

1 These results were obtained by U. Asher of Tel-Aviv University who used (23) with m = 1 
substituted into (6). 
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where the stability requirement turns out to be 

h = (At/h) < (l/20). (25) 

Here h = dx = dy, and u is the spectral radius of A = grad F and B = grad G. 
Condition (25) can be easily obtained with the use of the Lax-Wendroff-stability 

theorem which uses the numerical range of the amplification matrix [6] or [7, p. 881. 
As L, , the two-dimensional Lax-Wendroff scheme can be used with the stability 

criteria Xa < l/d/s. The improved Lax-Wendroff scheme, with a stabilizing 
fourth-order term and the stability criteria (25), is even better, since then (25) can 
be used for the hybrid scheme. Two-step second-order schemes as well as third- or 
fourth-order methods can play the role of the higher-order basic scheme. A 
hybrid scheme using (24) together with the Lax-Wendroff method is given by 

(26) 

Note that (26) is represented in conservation form since the right-hand side 
approximates 

It should be remembered that the B’s here are at least O(h) in smooth regions. 
A fourth-order stabilizing term, approximating (-X2/8) h4( 1 - (!))(A2 + B2) W,,,, , 
should be added to (26) in order to use (25) as the final stability condition, otherwise 
the stability requirement is Xa < l/d/8 (see [6]). 
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The switches @, & can be taken as 

Similarly two-dimensional versions of (22) and (23) can be easily written down. 
The extension to three dimensions is obvious. 

As already mentioned, the stricter stability criteria between those of L1 and L, 
is the final condition for L = BL, + (1 - 19) L, . Now L, , given by (24), has the 
amplification matrix 

G, = (1 - sin2 4 - sin2 -$) I + ih(A sin [ + B sin 7) (28) 

and we will denote by G, and G,’ the amplification matrices corresponding to the 
Lax-Wendroff and the modified L-W schemes, respectively. 

If q is any unit vector, then it is shown in [6] that 

/(Ga q)12 ,< 1 - I Aq I”(1 - 8 I Aq I”)(1 - cost)” 
- 1 Bq I”( 1 - 8 / Bq 12)(1 - cos q)“, (294 

/(G2’q, q)12 < 1 - [2 - cos 5 - cos 71 . [(I - cos 5) 1 Aq j2 

+ (1 - cos ~7) I ljq I”] . [l - 2 1 Aq I2 - 2 I fig 12], (29b) 

and similarly we get 

/(G,q, q)12 < 1 - 4 sin2 ((1 - 4 I Jq 1”) - 4 sin2 ~(1 - 4 I k?q 12), (29c) 

where a = hA, B = hB, and where t and q are the dual variables after the usual 
Fourier transform. 

In the linearized version, G = 8G, + (1 - 0) G,‘. Using (29) and imposing (25) 
(or Xa < l/d8 if G, replaces G,‘) we find that linear stability is achieved, since 

I(@, 411 G 0 I(%, 411 + (1 - 0) KG’q, q)l < 1. (30) 

Examining now the case where 1 Aq 1 = / Bq j = 0 we see that l(G,q, q)/ = 
/(G2’q, q)j = 1; this situation is possible if and only if zero is an eigenvalue of A 
and B. For this case the numerical range, as computed from (28) is /(G,q, q)/ = 
1 - sin2([/2) - sin”(T/2) and we see that for 0 < fl < 1, I(Gq, q)l < 1 for all 
0-c 141; PI < r. Consequently, our scheme has a damping effect, including 
the case when zero is an eigenvalue of A and B (stagnation points, etc. 
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[2, p. 209-2101); this is not so for 0 = 0, namely, for the pure Lax-Wendroff 
scheme. 

NUMERICAL RESULTS IN ONE DIMENSION 

Among the one-dimensional problems that were actually solved we will bring the 
results of two sets of examples: (I) a mathematical-model equation with a known 
solution used for checking the accuracy achieved in smooth regions, and the shock 
profiles produced; (II) a one-dimensional hydrodynamic shock for solving a 
physical problem and checking the numerical shock speed. 

First we take the equation 

with the initial conditions 

Zft + zfzf, = 0 (31) 

(32) 

In this case there is a compression region which gradually leads to a shock at the 
time t = 1, and a rarefaction wave with positive gradients which decrease in time. 
The exact solution is2 

x < 4 
t<x<l, 

( 
O<t.-” 1-i*-\ 

1<x<2+t 
2+t<x, 

contim 

and 

i 

1, x<2+t--7 
zf(x, t) = (x - 1)/(t + l), 2 + t - 7 d x < 2 + t 

1, 2+t<x 

WI 

The results after 300 time steps are shown in Figs. 1 and 2, where the exact 
solution is plotted for each graph together with the numerical solution. In all the 
cases, h = 0.05 and 0 < x < 20 were taken. Graph (la) shows the solution 
obtained with the first-order staggered method given by (4), graph (lb) was 

* This problem was suggested to us by M. Goldberg who used it in his Ph.D. thesis, Tel-Aviv 
University. He too, applied first order methods in shocks only, using his own technique. 
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FIGURE 1 

produced by the Lax-Wendroff scheme, graph (Ic) was obtained with a hybrid 
scheme using the switch (22) with x = l/2, m = 2 and where x is taken to be zero 
at rarefaction regions. 

Figure 2 shows the results of the same problem with switch (23), m = 1, and 
x = I., 0.5,0.3 for (2a), (2b), (2~) respectively. Graph (2~) demonstrates that when 
8,,, = x is less than l/2 the monotonicity is violated. Notice the correctness of the 
shock speed and the high accuracy at the smooth regions. This high accuracy is 
such that the numerical values corresponding to graphs (lb) and (2b), are the same 
up to 6 significant decimal places everywhere except in the narrow shock region. 
The width of the shock region in graph (2b) is almost as small as in graph (lb) and 
is much smaller than in graph (la). 

As a second one-dimensional example, we take the hydrodynamic system of 
equations in Lagrangean formulation [7, Chapter 121, 

[;]t+[;]z=o (V,=l). (34) 
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Here V, U, E and P are the specific volume, the velocity, the total energy per unit 
mass and the pressure, respectively. We take the simple equation of state 
P = (y - l)(E - 1/2u2)/V’, where y is the polytropic constant. The eigenvalues of 
A = grad F [F = (u, -P, -Pu)], are 0, fC, where C is the Lagrangean sound 
speed given by (yP/V) li2. We solved some problems of stationary shocks with 
different values of y and different shock strengths (namely, different pressure ratios 
at the shock), corresponding to all the cases solved in [l]. 

Figure 3 shows the pressure for y = 1.4, pressure ratio of 10, after 200 time steps. 
Graph (3b) was produced by the Lax-Wendroff method and graph (3~) with the 
hybrid method (6) using the switch (23) with TV = C, IIZ = 1, x = 0.5. Graph (3a) 
shous for comparison the shock obtained with the staggered Lax method. 

All the conclusions arrived at for the simple Equation (31) were found to be 
valid for the system (34). The shock speed for graph (3~) is as correct as for (3a); 
the shock width is by l-2 cells larger than in [2] but much smaller than the 
corresponding width of first-order methods. 

Of course the Lax-Wendroff scheme could be used with nonlinear artificial viscos- 
ity (see [5]) but this is much more time consuming (especially in more dimensions), 
and much harder to generalize to several dimensions, as we shall see later. 

581/9/3-I3 
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FIGURE 3 

TWO-DIMENSIONAL RESULTS 

We choose the example of calculating a detached shock in front of a rectangular 
body moving with constant supersonic speed along its axis of symmetry. This 
problem was solved by Burstein [2], who used the Lax-Wendroff two-dimensional 
scheme with two one-dimensional artificial viscosity terms. 

In order to submit our scheme to a hard test we chose impulsive initial conditions, 
i.e., the body appeared impulsively at t = 0 in the supersonic flow. We solved this 
problem with a hybrid scheme as well as with Burstein’s method, where the 
Eulerian formulation was taken, i.e., the equations are 

1 m 
3-y m2 -.- 

2 P+ 

P- 

m 

n I I + mn 

II P 

-1 ’ 
E 

L 
f tEE 0 ./L 

t P 

n 
my1 

P 

!+_r6F+g1 

FE gz + ~ 
P 

where 

fl = (y - 1) (E - $1; fi = + $ (m” + n2), 

g, = (y - 1) (E - $1: g2 = 9 -$ (m2 + n”). 

Here p, m, n and E are the density, the momentum in the x direction (m = pu), 
the momentum in the y direction (n = pu) and the total energy per unit volume, 
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respectively. The pressure was taken as P = (y - l)[E - (nr2 + n2)/(2p)]. As 
pointed out earlier, any function which is a good sensor of shocks is suitable for 
constructing the switches. 

We chose 

i 

I Pi+1,j - Pi.j I 

1 

2 
f3:+1,2,j = x 

max I ~~+~,k - PZ,~ I ' 

( 
I Pi.j+1 - P&j I 

1 

2 
~:,~+I,2 = x 

max I ~~,k+~ - hk I ' 

Wa) 

where the maximum is taken over compression regions only, i.e., for all 1 and k 
suchthat~z+l,k > pZ.kin WabndpZ,k+l < P&,k in (36b). x will be specified in (38). 

In (36) the pressure P can replace the density p if desired. The quadratic B’s were 
chosen to ensure sharp switches in order to produce sharp shocks. The boundaries 
were treated according to Vliegenthart’s suggestions [9], except that we took 
higher-order extrapolations whose directions fall into the appropriate domain of 
influence. 

We show below some results of stationary density profiles along lines parallel 
to the axis of symmetry for different values of y. The initial conditions for these 
cases are 

y = 1.4; P = 1; p = I; n = 0; 
WZ=5 (namely, a Mach number of - 4.23), (37) 
and an impulsive start at t = 0. 

Graph (4a) shows the results with our method, graph (4b) with Burstein’s method. 
In both runs the geometry and mesh size were exactly as specified in [2]. 

The artificial viscosity constant in Burstein’s method {x in formula (5.3a) in [2]} 
was taken as 2, since the value of 1 was insufficient for preventing severe nonlinear 
instabilities, even when changing the constant from 2 to 1 after several hundreds of 
cycles. The results shown in Fig. (4a) were obtained with the switches (36) substi- 
tuted in (26), where 

?&/’ Pi+13 - Pi,j > 0 
01 Pi+1,j - pi2 < 0, 

[in (36a)] 

Pi,j+1 - Pi,j < 0 
Pia+ - pi,j >, 0. 

[in (36b)]. 

We propose to take 01 = 0 in general, but for the present problem it was necessary 
to take a small positive 01 because of the strong rarefaction gradients near the 
corner; we have taken 01 = 0.05. The constant 01 should be small enough so that 
the 0 near the corner will be much smaller than the maximal 8 obtained at the shock. 
At all other smooth regions, (36) yields 0 = O(h2) which is even one order higher 
than needed to ensure second-order accuracy. 

5w9/3-13* 
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L 1 
IO x 23 

FIGURE 4 

It is to be expected that 01 = 0 can be taken for aerodynamical bodies having 
continuously differentiable surfaces. The need for a small positive a: in our problem 
is necessitated by the corner singularity. The shock in Fig. (4b) has a smoother 
profile than in Fig. (4a) but occupies 4-5 cells comparted to 334 cells in Fig. (4b). 
Figure 5 shows results of the flow field with the sonic line and the detached shock 
wave obtained by our method as well as with Burstein’s. The results are practically 
the same except for small differences near the corner; with both these methods the 
sonic line meets the body at the corner in contrast to first-order results [2, Fig. 61 
where the sonic line is smeared along the upper boundary. For both methods 
approximately 2000 cycles are needed to reach the steady state, when starting with 
the initial values (28). The flow field is given in Fig. 5 below. 

The self-adjusting hybrid scheme has several advantages. Firstly, it saves consid- 
erable computing time; it takes less than half the time per cycle compared to 
Burstein’s method. This advantage is even more considerable for three dimensions. 
Secondly, its structure is general; better schemes than Lax-Wendroff’s can be used 
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shock 

jjl_ 

2 
I I 

23 -’ 

FIGURE 5 

for L, as, for example, optimally stable schemes, third- or fourth-order schemes, etc. 
Additional advantages are the freedom in choosing a suitable numerical switch 

as well as the easy insertion of the hybridization technique into existing computer 
programs for solving problems containing discontinuities. 
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